WEIGHTED HARMONIC BERGMAN FUNCTIONS ON HALF-SPACES
نویسندگان
چکیده
منابع مشابه
Harmonic Bergman Functions on Half-spaces
We study harmonic Bergman functions on the upper half-space of Rn. Among our main results are: The Bergman projection is bounded for the range 1 < p <∞; certain nonorthogonal projections are bounded for the range 1 ≤ p < ∞; the dual space of the Bergman L1-space is the harmonic Bloch space modulo constants; harmonic conjugation is bounded on the Bergman spaces for the range 1 ≤ p <∞; the Bergma...
متن کاملComposition Operators on Weighted Bergman Spaces of a Half Plane
We use induction and interpolation techniques to prove that a composition operator induced by a map φ is bounded on the weighted Bergman space Aα(H) of the right half-plane if and only if φ fixes ∞ non-tangentially, and has a finite angular derivative λ there. We further prove that in this case the norm, essential norm, and spectral radius of the operator are all equal, and given by λ.
متن کاملWeighted Composition Operators from Weighted Bergman Spaces to Weighted-Type Spaces on the Upper Half-Plane
and Applied Analysis 3 Let β > 0. The weighted-type space or growth space on the upper half-planeA∞ β Π consists of all f ∈ H Π such that ∥ ∥f ∥ ∥ A∞ β Π sup z∈Π Iz β ∣ ∣f z ∣ ∣ < ∞. 1.7 It is easy to check thatA∞ β Π is a Banach space with the norm defined above. For weightedtype spaces on the unit disk, polydisk, or the unit ball see, for example, papers 10, 32, 33 and the references therein....
متن کاملOperators on weighted Bergman spaces
Let ρ : (0, 1] → R+ be a weight function and let X be a complex Banach space. We denote by A1,ρ(D) the space of analytic functions in the disc D such that ∫ D |f(z)|ρ(1 − |z|)dA(z) < ∞ and by Blochρ(X) the space of analytic functions in the disc D with values in X such that sup|z|<1 1−|z| ρ(1−|z|)‖F ′(z)‖ < ∞. We prove that, under certain assumptions on the weight, the space of bounded operator...
متن کاملWeighted composition operators on weighted Bergman spaces and weighted Bloch spaces
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Mathematical Society
سال: 2005
ISSN: 0304-9914
DOI: 10.4134/jkms.2005.42.5.975